All Issue

2020 Vol.30, Issue 4 Preview Page

Original Article

31 August 2020. pp. 417-431
Abstract
References
1
Bellian, J.A., Kerans, C. and Jennette, D.C., 2005. Digital outcrop models: applications of terrestrial scanning LIDAR technology in stratigraphic modeling. Journal of Sedimentary Research, 75(2), 166-176.
10.2110/jsr.2005.013
2
Burton, D., Dunlap, D.B., Wood, L.J. and Flaig, P.P., 2011. LIDAR intensity as a remote sensor of rock properties. Journal of Sedimentary Research, 81(5), 339-347.
10.2110/jsr.2011.31
3
Coren, F. and Sterzai, P., 2006. Radiometric correction in laser scanning. International Journal of Remote Sensing, 27(15), 3097-3104.
10.1080/01431160500217277
4
Ercoli, L., Megna, B., Nocilla, A. and Zimbardo, M., 2013. Measure of a limestone weathering degree using laser scanner. International Journal of Architectural Heritage, 7(5), 591-607.
10.1080/15583058.2012.654893
5
Fowler, A., France, J.I. and Truong, M., 2011. Applications of advanced laser scanning technology in geology. Riegl USA. http://www. rieglusa. com/pdf/applications-ofadvanced-laser-scanning-technology-in-geology-ananda-fowler-final. pdf. (May 20, 2020)
6
Franceschi, M., Teza, G., Preto, N., Pesci, A., Galgaro, A. and Girardi, S., 2009. Discrimination between marls and limestones using intensity data from terrestrial laser scanner. ISPRS Journal of Photogrammetry and Remote Sensing, 64(6), 522-528.
10.1016/j.isprsjprs.2009.03.003
7
Kaasalainen, S., Jaakkola, A., Kaasalainen, M., Krooks, A. and Kukko, A., 2011. Analysis of incidence angle and distance effects on terrestrial laser scanner intensity: Search for correction methods. Remote Sensing, 3(10), 2207-2221.
10.3390/rs3102207
8
Klise, K.A., Weissmann, G.S., McKenna, S.A., Nichols, E.M., Frechette, J.D., Wawrzyniec, T.F. and Tidwell, V.C., 2009. Exploring solute transport and streamline connectivity using LIDAR‐based outcrop images and geostatistical representations of heterogeneity. Water Resources Research, 45(5), W05413.
10.1029/2008WR007500
9
Lee, S.D. and Jeon, S.W., 2017. A Study on the Roughness Measurement for Joints in Rock Mass Using LIDAR. Tunnel and Underground Space, 27(1), 58-68. (in Korean)
10.7474/TUS.2017.27.1.058
10
Pesci, A., Teza, G. and Ventura, G., 2008. Remote sensing of volcanic terrains by terrestrial laser scanner: preliminary reflectance and RGB implications for studying Vesuvius crater (Italy). Annals of Geophysics, 51(4), 633-653.
11
Shin, J.I., 2007. Signal characteristics analysis and normalization of LIDAR intensity data. Master's Thesis, Inha University. (in Korean)
12
Tan, K. and Cheng, X., 2015. Intensity data correction based on incidence angle and distance for terrestrial laser scanner. Journal of Applied Remote Sensing, 9(1), 094094.
10.1117/1.JRS.9.094094
13
Wicaksana, Y., 2020. Prediction of rock cutting performance and abrasiveness considering dynamic properties at intermediate strain rate. Ph.D. Dissertation, Seoul National University.
14
Yoo, W.K., Kim, J. and Kim, T.H., 2015. The relationship between weathering degree and reflectance of laser scanner considering RGB value, Journal of the Korea Academia Industrial Cooperation Society, 16(10), 7182-7188. (in Korean)
10.5762/KAIS.2015.16.10.7182
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 30
  • No :4
  • Pages :417-431