All Issue

2018 Vol.28, Issue 6 Preview Page

Research Article

31 December 2018. pp. 670-691
Abstract
References
1
Bohloli, B., Choi, J.C., Skurtveit, E., Grande, L., Park, J., Vannest, M., 2015, Criteria of fault geomechanical stability during a pressure buildup, IEAGHG report 2015/04. Cheltenham, UK.
2
Cappa, F., Rutqvist, J., 2011, Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2, International Journal of Greenhouse Gas Control, Vol. 5, pp. 336-346.
10.1016/j.ijggc.2010.08.005
3
Cuisiat, F., Jostad, H.P., Andresen, L., Skurtveit, E., Skomedal, E., Hettema, M., Lyslo, K., 2010, Geomechanical integrity of sealing faults during depressurization of the Statfjord field, Journal of Structural Geology, Vol. 32, pp. 1754-1767.
10.1016/j.jsg.2010.01.006
4
Gudmundsson, A., 2004, Effects of Young's modulus on fault displacement. Comptes Rendus Geoscience, Vol. 336, pp. 85-92.
10.1016/j.crte.2003.09.018
5
Guglielmi, Y., Elsworth, D., Cappa, F., Henry, P., Gout, C., Dick, P., Durand, J., 2015, In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales, Journal of Geophysical Research: Solid Earth, Vol. 120, pp. 7729–7748.
10.1002/2015JB012158
6
Gutierrez, M., Makurat, A., 1997, Coupled HTM modelling of cold water injection in fractured hydrocarbon reservoirs, International Journal of Rock Mechanics and Mining Sciences, Vol. 34, pp113.e1-113.e15n
7
Kim, H.M., Rutqvist, J., Ryu, D.W., Choi, B.H., Sunwoo, C., Song, W.K., 2012, Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance, Applied Energy, Vol. 92, pp. 653-667.
10.1016/j.apenergy.2011.07.013
8
Leijon, B., 1993, Mechanical properities of fracture zones, SKB Technical Report TR 93-19.
9
Morris, J.P., Hao, Y., Foxall, W., McNab, W., 2011, A study of injection-induced mechanical deformation at the In Salah CO2 storage project, International Journal of Greenhouse Gas Control, Vol. 5, pp. 270-280.
10.1016/j.ijggc.2010.10.004
10
Orlic, B., Heege, J., Wassing B., 2011, Assessing the integrity of fault- and top seals at CO2 storage sites, Energy Procedia, Vol. 4, pp. 4798-4805.
10.1016/j.egypro.2011.02.445
11
Park, J.W., Rutqvist, J., Ryu, D.W., Park, E.S., Synn, J.H., 2016, Coupled thermal-hydrological-mechanical behavior of rock mass surrounding a high-temperature thermal energy storage cavern at shallow depth, International Journal of Rock Mechanics & Mining Sciences, Vol. 83, pp. 149-161.
10.1016/j.ijrmms.2016.01.007
12
Park, J.W., Park, E.S., Kim, T., Lee, C., Lee, J., 2018, Hydro-mechanical modelling of fault slip induced by water injection: DECOVALEX-2019 Task B (Step 1), Tunnel & Underground Space, Vol. 28, pp. 400-425.
13
Peng, H.-Y., Yeh, H.-D, Yang, S.-Y., 2002, Improved numerical evaluation of the radial groudwater flow equation, Advances in Water Resources, Vol. 25, pp. 663-675.
10.1016/S0309-1708(02)00030-1
14
Rinaldi, A.P., Rutqvist, J., Cappa, F., 2014, Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection, International Journal of Greenhouse Gas Control, Vol. 20, pp. 117-131.
10.1016/j.ijggc.2013.11.001
15
Rutqvist, J., Dobson, P.F., Garcia, J., Hartline, C., Jeanne, P., Oldenburg, C.M., Vasco, D.W., Walters, M., 2015, The northwest Geysers EGS demonstration project, California: Pre-stimulation modeling and interpretation of the stimulation. Mathematical Geosciences, Vol. 47, pp. 3-29.
10.1007/s11004-013-9493-y
16
Rutqvist, J., Graupner, B., Guglielmi, Y., 2017, Fault Slip Test - Modelling the induced slip of a fault in argillaceous rock - Discussion, Presentation at the 4th workshop of DECOVALEX-2019, Kingston, UK.
PMC5357467
17
Rutqvist, J., 2012, Status of the TOUGH-FLAC simulator and recent applications related to coupled fluid flow and crustal deformations, Computers & Geosciences, Vol. 37, pp. 739-750.
10.1016/j.cageo.2010.08.006
18
Rutqvist, J., Tsang, C.F., 2012, Multiphysics processes in partially saturated fractured rock: Experiments and models from Yucca Mountain. Reviews of Geophysics, Vol. 50, RG3006.
10.1029/2012RG000391
19
Rutqvist, J., Wu, Y-S. Tsang, C.F., Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences, Vol. 39, pp. 429-442.
10.1016/S1365-1609(02)00022-9
20
Vidal-Gilbert, S., Nauroy, J.-F., Brosse, E., 2009, 3D geomechanical modelling for CO2 geologic storage in the Dogger carbonates of the Paris Basin. International Journal of Greenhouse Gas Control, Vol. 3, pp. 288-299.
10.1016/j.ijggc.2008.10.004
21
Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research, Vol. 16, pp. 1016-1024.
10.1029/WR016i006p01016
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 28
  • No :6
  • Pages :670-691
  • Received Date : 2018-12-14
  • Revised Date : 2018-12-19
  • Accepted Date : 2018-12-21