All Issue

2019 Vol.29, Issue 1 Preview Page

Technical Note

28 February 2019. pp. 12-29
Abstract
References
1
Barton N (2007) Thermal over-closure of joints and rock masses and implications for HLW repositories. Proc. of 11th ISRM congress, Lisbon (2007): 109-116.
2
Cappa F, Guglielmi Y, Fe´nart P, Merrien-Soukatchoff V, Thoraval A (2005) Hydromechanical interactions in a fractured carbonate reservoir inferred from hydraulic and mechanical measurements. Int J Rock Mech Min Sci 42:287-306.
10.1016/j.ijrmms.2004.11.006
3
Cappa F, Guglielmi Y, Rutqvist J, Tsang C-F, Thoraval A (2008) Estimation of fracture flow parameters through numerical analysis of hydromechanical pulses. Water Resour Res 44(W11408):1-15.
10.1029/2008WR007015
4
Cooper, HH., Bredehoeft, JD and Papadopulos, SS (1967) Response of a finite-diameter well to an instantaneous charge of water, Water Resources Research 3(1):263-269.
10.1029/WR003i001p00263
5
Guglielmi Y, Cappa F, Rutqvist J, Tsang C-F, Thoraval A (2008) Mesoscale characterization of coupled hydromechanical behavior of a fractured-porous slope in response to free water-surface movement. Int J Rock Mech Min Sci 42:852-878.
10.1016/j.ijrmms.2007.09.010
6
Guglielmi Y, Cappa F, Lancon H, Janowczyk JB, Rutqvist J, Tsang CF, Wang JSY (2014) ISRM Suggested Method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-Components Borehole Deformation Sensor. Rock Mechanics and Rock Engineering 47:303-311.
10.1007/s00603-013-0517-1
7
Guglielmi, Y. Elsworth, D. Cappa, F, Henry, P., Gout, C., Dick, P., and Durand, J (2015) In situ observations on the coupling between hydraulic diffusivity and displacements during fault reactivation in shales, J. Geophys. Res. Solid Earth, 120, doi:10.1002/2015JB012158.
10.1002/2015JB012158
8
Horne RN, (1995) Modern well test analysis: A computer-aided approach, 2nd Ed., Petroway Inc., Palo Alto, CA p.257.
9
Jaeger JC, Cook NGW, Zimmerman R. 2007, Fundamentals of rock mechanics, 4th edn. Blackwell, Oxford, p 475
10
Jeanne, P., Guglielmi, Y., Rutqvist, J., Nussbaum, C., & Birkholzer, J. (2018). Permeability variations associated with fault reactivation in a claystone formation investigated by field experiments and numerical simulations. Journal of Geophysical Research: Solid Earth, 123, 1694.1710.
10.1002/2017JB015149
11
Kim, HM, Park ES, Synn JH, Park YC (2008) Greenhouse Gas (CO2) Geological Sequestration and Geomechanical Technology Component, Tunnel & Underground Space Vol. 18(3), pp.175-184.
12
Kim, HM, Bae, WS (2013) Enhanced Oil Recovery (EOR) Technology Coupled with Underground Carbon Dioxide Sequestration, Tunnel & Underground Space Vol. 23(1), pp.1-12.
10.7474/TUS.2013.23.1.001
13
Kim HM, Synn JH, Ando K (2007) Review of hydaulic properties of jointed rock mass from borehole tests, 2007 KSRM Conference, March 2007: 221-222.
14
Kim HM, Lettry Y. Ryu DH, Song WK (2014) Mock-up experiments on permeability measurement of concrete and construction joints for air tightness assessment, Materials and Strucutres 47:127-149.
10.1617/s11527-013-0050-4
15
Min KB, Song Y, Yoon WS (2013) EGS Power Generation and Hydraulic Stimulation, Tunnel & Underground Space Vol. 23(6), pp.506-520.
10.7474/TUS.2013.23.6.506
16
Min KB, Rutqvist J, Elsworth D (2009) Chemically and mechanically mediated influences on the transport and mechanical characteristics of rock fractures. International Journal of Rock Mechanics and Mining Sciences 46: 80-89.
10.1016/j.ijrmms.2008.04.002
17
Morris A, Ferrill DA, Henderson DB (1996) Slip-tendency analysis and fault reactivation. Geology 24(3):275-278.
10.1130/0091-7613(1996)024<0275:STAAFR>2.3.CO;2
18
Oldenburg, CM. et al. (2017) Hydraulic Fracturing Experiments at 1500 m Depth in a Deep Mine: Highlights from the kISMET Project, PROCEEDINGS, 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California, February 13-15, 2017 SGP-TR-212.
19
Park, JW, Park, ES, Kim, T, Lee, C, Lee, J (2018a) Hydro-mechanical modelling of fault slip induced by water injection: DECOVALEX-2019 Task B (Step 1), Tunnels & Underground Space 28(5): 400-425.
20
Park, JW, Kim, T, Park, ES, Lee, C (2018b) Coupled hydro-mechanical modelling of fault reactivation induced by water injection: DECOVALEX-2019 Task B (Benchmark Model Test), Tunnels & Underground Space 28(6): 670-691.
21
Quinn P, John A, Cherry JA, Parker BL (2011) Hydraulic testing using a versatile straddle packer system for improved transmissivity estimation in fractured-rock boreholes. Hydrogeology journal 20: 1529-1547.
10.1007/s10040-012-0893-8
22
Rutqvist J (2015) Fractured rock stress-permeability relationships from in situ data and effects of temperature and chemical-mechanical couplings. Geofluids 15: 48-66.
10.1111/gfl.12089
23
Rutqvist J, Tsang CF (2002) A study of caprock hydromechanical changes associated with CO2-injeciton into a brine formation. Environmental Geology 42: 296-305.
10.1007/s00254-001-0499-2
24
Rutqvist J, Birkholzer J, Cappa F, Tsang C-F (2007) Estimating maximum sustainable injection pressure during geological sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis. Energy Conversion and Management 48(6): 1798-1807.
10.1016/j.enconman.2007.01.021
25
Rutqvist J, Tsang CF, Stephansson O (1998) Determination of fracture storativity in hard rocks using high pressure testing. Water Resour Res 34: 2551-2560.
10.1029/98WR01863
26
Schweisinger T, Swenson EJ, Murdoch LC (2009) Introduction to hydromechanical well tests in fractured rock aquifers. Groundwater 47(1): 69-79.
10.1111/j.1745-6584.2008.00501.x18823402
27
Synn, JH, Park, C (2018) Hydromechanical dynamics of hydraulic and natural fractures, J. Korean Soc. Miner. Energy Resour. Eng. 55(4): 340-353.
10.32390/ksmer.2018.55.4.340
28
Vasco DW (2009) Modeling broad-band poroelastic propagation using an asymptotic approach. PDF from scholarship.org. Geophys J Int Wiley Online Libr 179(1): 299-318.
10.1111/j.1365-246X.2009.04263.x
29
Vasco DW, Minkoff SE (2009) Modelling flow in a pressure sensitive, heterogeneous medium. Geophys J Int 179: 972-989.
10.1111/j.1365-246X.2009.04330.x
30
Witherspoon PF, Wang JSY, Iwai K, Gale JE (1980) Validity of cubic law for fluid flow in a deformable rock fracture. Water Resour Res 16(6): 1016-1024.
10.1029/WR016i006p01016
31
Yasuhara HD, Elsworth D, Polak A (2004) Evolution of permeability in a natural fracture: significant role of pressure solution. Journal of Geophysical Research 109: B3204.
10.1029/2003JB002663
32
Yasuhara H, Kinoshita N, Ohfuji H, Lee DS, Nakashima S, Kishida K (2011) Temporal alteration of fracture permeability in granite under hydrothermal conditions and its interpretation by coupled chemo-mechanical model. Applied Geochemistry 26: 2074-88.
10.1016/j.apgeochem.2011.07.005
Information
  • Publisher :Korean Society for Rock Mechanics and Rock Engineering
  • Publisher(Ko) :한국암반공학회
  • Journal Title :Tunnel and Underground Space
  • Journal Title(Ko) :터널과 지하공간
  • Volume : 29
  • No :1
  • Pages :12-29
  • Received Date : 2019-02-12
  • Revised Date : 2019-02-20
  • Accepted Date : 2019-02-21